详解数据挖掘十大经典算法

国际权威的学术组织theIEEEInternationalConferenceonDataMining(ICDM)年月评选出了数据挖掘领域的十大经典算法:C4.5,k-Means,SVM,Apriori,EM,PageRank,AdaBoost,kNN,NaiveBayes,andCART.

不仅仅是选中的十大算法,其实参加评选的8种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。

数据挖掘十大经典算法()C4.5

机器学习中,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。

从数据产生决策树的机器学习技术叫做决策树学习,通俗说就是决策树。

决策树学习也是数据挖掘中一个普通的方法。在这里,每个决策树都表述了一种树型结构,他由他的分支来对该类型的对象依靠属性进行分类。每个决策树可以依靠对源数据库的分割进行数据测试。这个过程可以递归式的对树进行修剪。当不能再进行分割或一个单独的类可以被应用于某一分支时,递归过程就完成了。另外,随机森林分类器将许多决策树结合起来以提升分类的正确率。

决策树同时也可以依靠计算条件概率来构造。决策树如果依靠数学的计算方法可以取得更加理想的效果。

决策树是如何工作的决策树一般都是自上而下的来生成的。选择分割的方法有好几种,但是目的都是一致的:对目标类尝试进行最佳的分割。从根到叶子节点都有一条路径,这条路径就是一条“规则”。决策树可以是二叉的,也可以是多叉的。对每个节点的衡量:)通过该节点的记录数)如果是叶子节点的话,分类的路径)对叶子节点正确分类的比例。有些规则的效果可以比其他的一些规则要好。

由于ID算法在实际应用中存在一些问题,于是Quilan提出了C4.5算法,严格上说C4.5只能是ID的一个改进算法。相信大家对ID算法都很.熟悉了,这里就不做介绍。C4.5算法继承了ID算法的优点,并在以下几方面对ID算法进行了改进:)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;)在树构造过程中进行剪枝;)能够完成对连续属性的离散化处理;4)能够对不完整数据进行处理。C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。此外,C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。

数据挖掘十大经典算法()Thek-meansalgorithm

k-meansalgorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,kn。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。

假设有k个群组Si,i=,,…,k。μi是群组Si内所有元素xj的重心,或叫中心点。k平均聚类发明于年,该算法最常见的形式是采用被称为劳埃德算法(Lloydalgorithm)的迭代式改进探索法。劳埃德算法首先把输入点分成k个初始化分组,可以是随机的或者使用一些启发式数据。然后计算每组的中心点,根据中心点的位置把对象分到离它最近的中心,重新确定分组。继续重复不断地计算中心并重新分组,直到收敛,即对象不再改变分组(中心点位置不再改变)。

劳埃德算法和k平均通常是紧密联系的,但是在实际应用中,劳埃德算法是解决k平均问题的启发式法则,对于某些起始点和重心的组合,劳埃德算法可能实际上收敛于错误的结果。(上面函数中存在的不同的最优解)虽然存在变异,但是劳埃德算法仍旧保持流行,因为它在实际中收敛非常快。实际上,观察发现迭代次数远远少于点的数量。然而最近,DavidArthur和SergeiVassilvitskii提出存在特定的点集使得k平均算法花费超多项式时间达到收敛。

近似的k平均算法已经被设计用于原始数据子集的计算。从算法的表现上来说,它并不保证一定得到全局最优解,最终解的质量很大程度上取决于初始化的分组。由于该算法的速度很快,因此常用的一种方法是多次运行k平均算法,选择最优解。k平均算法的一个缺点是,分组的数目k是一个输入参数,不合适的k可能返回较差的结果。另外,算法还假设均方误差是计算群组分散度的最佳参数。

数据挖掘十大经典算法()Supportvectormachines

支持向量机,英文为SupportVectorMachine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。

支持向量机属于一般化线性分类器.他们也可以认为是提克洛夫规范化(TikhonovRegularization)方法的一个特例.这族分类器的特点是他们能够同时最小化经验误差与最大化几何边缘区.因此支持向量机也被称为最大边缘区分类器。在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(LatentVariabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(DataClustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),也就是将隐藏变量象能够观测到的一样包含在内从而计算最大似然的期望值;另外一步是最大化(M),也就是最大化在E步上找到的最大似然的期望值从而计算参数的最大似然估计。M步上找到的参数然后用于另外一个E步计算,这个过程不断交替进行。

Vapnik等人在多年研究统计学习理论基础上对线性分类器提出了另一种设计最佳准则。其原理也从线性可分说起,然后扩展到线性不可分的情况。甚至扩展到使用非线性函数中去,这种分类器被称为支持向量机(SupportVectorMachine,简称SVM)。支持向量机的提出有很深的理论背景。支持向量机方法是在近年来提出的一种新方法。SVM的主要思想可以概括为两点:()它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能;()它基于结构风险最小化理论之上在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。

在学习这种方法时,首先要弄清楚这种方法考虑问题的特点,这就要从线性可分的最简单情况讨论起,在没有弄懂其原理之前,不要急于学习线性不可分等较复杂的情况,支持向量机在设计时,需要用到条件极值问题的求解,因此需用拉格朗日乘子理论,但对多数人来说,以前学到的或常用的是约束条件为等式表示的方式,但在此要用到以不等式作为必须满足的条件,此时只要了解拉格朗日理论的有关结论就行。

介绍

支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.CBurges的《模式识别支持向量机指南》。vanderWalt和Barnard将支持向量机和其他分类器进行了比较。

动机

有很多个分类器(超平面)可以把数据分开,但是只有一个能够达到最大分割。

问题定义

设样本属于两个类,用该样本训练svm得到的最大间隔超平面。在超平面上的样本点也称为支持向量.

我们考虑以下形式的样本点

由于我们要求最大间隔,因此我们需要知道支持向量以及(与最佳超平面)平行的并且离支持向量最近的超平面。我们可以看到这些平行超平面可以由方程族:

来表示。

如果这些训练数据是线性可分的,那就可以找到这样两个超平面,在它们之间没有任何样本点并且这两个超平面之间的距离也最大.通过几何不难得到这两个超平面之间的距离是/

w

,因此我们需要最小化

w

。同时为了使得样本数据点都在超平面的间隔区以外,我们需要保证对于所有的i满足其中的一个条件

这两个式子可以写作:

原型

现在寻找最佳超平面这个问题就变成了在()这个约束条件下最小化

w

.这是一个二次規劃QP(quadraticprogramming)最优化中的问题。

更清楚的,它可以表示如下:

/这个因子是为了数学上表达的方便加上的。

对偶型(DualForm)

把原型的分类规则写作对偶型,可以看到分类器其实是一个关于支持向量(即那些在间隔区边缘的训练样本点)的函数。

支持向量机的对偶型如下:并满足αi=0

软间隔

年,CorinnaCortes与Vapnik提出了一种改进的最大间隔区方法,这种方法可以处理标记错误的样本。如果可区分正负例的超平面不存在,则“软边界”将选择一个超平面尽可能清晰地区分样本,同时使其与分界最清晰的样本的距离最大化。这一成果使术语“支持向量机”(或“SVM”)得到推广。这种方法引入了松驰参数ξi以衡量对数据xi的误分类度。

随后,将目标函数与一个针对非0ξi的惩罚函数相加,在增大间距和缩小错误惩罚两大目标之间进行权衡优化。如果惩罚函数是一个线性函数,则等式()变形为

数据挖掘十大经典算法(4)TheApriorialgorithm

Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。

Apriori演算法所使用的前置统计量包括了:

最大规则物件数:规则中物件组所包含的最大物件数量

最小支援:规则中物件或是物件组必顸符合的最低案例数

最小信心水准:计算规则所必须符合的最低信心水准门槛

该算法的基本思想是:首先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。然后由频集产生强关联规则,这些规则必须满足最小支持度和最小可信度。然后使用第步找到的频集产生期望的规则,产生只包含集合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定义。一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被留下来。为了生成所有频集,使用了递推的方法。可能产生大量的候选集,以及可能需要重复扫描数据库,是Apriori算法的两大缺点。

数据挖掘十大经典算法(5)最大期望(EM)算法

在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(LatentVariabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(DataClustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),也就是将隐藏变量象能够观测到的一样包含在内从而计算最大似然的期望值;另外一步是最大化(M),也就是最大化在E步上找到的最大似然的期望值从而计算参数的最大似然估计。M步上找到的参数然后用于另外一个E步计算,这个过程不断交替进行。

最大期望过程说明

数据挖掘十大经典算法(6)PageRank

PageRank是Google算法的重要内容。00年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(LarryPage)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。

Google的PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票,被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。

Google有一套自动化方法来计算这些投票。Google的PageRank分值从0到0;PageRank为0表示最佳,但非常少见,类似里氏震级(Richterscale),PageRank级别也不是线性的,而是按照一种指数刻度。这是一种奇特的数学术语,意思是PageRank4不是比PageRank好一级——而可能会好6到7倍。因此,一个PageRank5的网页和PageRank8的网页之间的差距会比你可能认为的要大的多。

PageRank较高的页面的排名往往要比PageRank较低的页面高,而这导致了人们对链接的着魔。在整个SEO社区,人们忙于争夺、交换甚至销售链接,它是过去几年来人们

转载请注明:http://www.dbmow.com/jbby/11949.html


  • 上一篇文章:
  • 下一篇文章: 没有了
  • 网站简介 | 发布优势 | 服务条款 | 隐私保护 | 广告合作 | 网站地图 | 版权申明 |